JOM 23634

η^7 -Cycloheptatrienyl-carbonylvanadium-Komplexe mit mono- und bifunktionellen Phosphan-Liganden. Eine ⁵¹V-NMR-spektroskopische Untersuchung

Max Herberhold und Matthias Schrepfermann

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 10 12 51, D-95540 Bayreuth (Deutschland) (Eingegangen den 12. Februar 1993)

Abstract

The photo-induced reaction of $(\eta^7 - C_7 H_7)V(CO)_3$ with phosphanes (L) leads generally to monosubstituted derivatives of the type $(\eta^7 - C_7 H_7)V(CO)_2(L)$ (1) (L = PMe₃ (1a), PPh₃ (1b), PⁿBu₃ (1c), P(OMe)₃ (1d), P(OEt)₃ (1e), P(OMe)₂(OSiMe₃) (1f) and P(NMe₂)₃ (1g)). The synthesis may be conducted either directly under irradiation in tetrahydrofuran solution or indirectly via the photo-generated, labile acetonitrile complex $(\eta^7 - C_7 H_7)V(CO)_2(NCMe)$ which reacts with L in a dark reaction under mild conditions. Disubstituted derivatives of the type $(\eta^7 - C_7 H_7)V(CO)(L)_2$ (2) (L = PMe₃ (2a) and P(OMe)₃ (2d)) are only formed with small phosphane ligands. The chiral complex $(\eta^7 - C_7 H_7)V(CO)(PMe_3)(P(OMe)_3)$ (2a/d) can be generated photolytically from 1d and PMe₃ and identified in solution.

Binuclear complexes $[(\eta^7-C_7H_7)V(CO)_2]_2(\mu_2-L-L)$ (3) $(L-L = Ph_2PC=CPPh_2$ (3h), *cis*-Ph_2PCH=CHPPh_2 (3i) and Me_2PCH_2-CH_2PMe_2 (3j)) as well as chelate complexes $(\eta^7-C_7H_7)V(CO)(L-L)$ (4) (L-L = cis-Ph_2PCH=CHPPh_2 (4i) and Me_2PCH_2CH_2PMe_2 (4j)) can be obtained by photolysis of $(\eta^7-C_7H_7)V(CO)_3$ in the presence of bifunctional phosphanes L-L. For the characterisation of the new complexes, the combination of ⁵¹V and ³¹P NMR spectroscopy has been shown to be particularly useful.

Zusammenfassung

Die photo-induzierte Reaktion von $(\eta^7 - C_7 H_7)V(CO)_3$ mit Phosphanen (L) führt in der Regel zu monosubstituierten Derivaten des Typs $(\eta^7 - C_7 H_7)V(CO)_2(L)$ (1) (L = PMe₃ (1a), PPh₃ (1b), PⁿBu₃ (1c), P(OMe)₃ (1d), P(OEt)₃ (1e), P(OMe)₂(OSiMe₃) (1f) und P(NMe₂)₃ (1g)). Die Umsetzung kann entweder direkt unter Bestrahlung in Tetrahydrofuran-Lösung oder indirekt über den photochemisch entstehenden, labilen Acetonitril-Komplex $(\eta^7 - C_7 H_7)V(CO)_2(NCMe)$ erfolgen, der in einer Dunkelreaktion unter milden Bedingungen mit L reagiert. Disubstituierte Derivate des Typs $(\eta^7 - C_7 H_7)V(CO)(L)_2$ (2) (L = PMe₃ (2a) und P(OMe)₃ (2d)) entstehen nur mit kleinen Phosphan-Liganden, Der chirale Komplex $(\eta^7 - C_7 H_7)V(CO)(PMe_3)[P(OMe)_3]$ (2a/d) läßt sich photolytisch aus 1d und PMe₃ erzeugen und in Lösung identifizieren.

Zweikernige Komplexe $[(\eta^7-C_7H_7)V(CO)_2]_2(\mu_2-L-L)$ (3) $(L-L = Ph_2PC \equiv CPPh_2$ (3h), *cis*-Ph_2PCH=CHPPh_2 (3i) und Me_2P-CH_2CH_2PMe_2 (3j)) sowie Chelat-Komplexe $(\eta^7-C_7H_7)V(CO)(L-L)$ (4) (L-L = cis-Ph_2PCH=CHPPh_2 (4i) und Me_2PCH_2CH_2P-Me_2 (4j)) können durch Photolyse von $(\eta^7-C_7H_7)V(CO)_3$ in Gegenwart von bifunktionellen Phosphanen L-L erhalten werden. Bei der Charakterisierung der neuen Komplexe hat sich die Kombination von ⁵¹V- und ³¹P-NMR-Spektroskopie besonders bewährt.

1. Einleitung

In der Reihe der isoelektronischen Verbindungen $(\eta^5 - C_5H_5)Mn(CO)_3$, $(\eta^6 - C_6H_6)Cr(CO)_3$ und $(\eta^7 - C_7H_7)V(CO)_3$ hat der Vanadium-Komplex [1,2] bisher wenig Beachtung gefunden.

Neben spektroskopischen Untersuchungen [3] wurden lediglich Arbeiten über ringsubstituierte Halbsand-

Correspondence to: Prof. M. Herberhold.

wich- und Sandwich-Komplexe vom Typ $(\eta^7-C_7H_6X)V$ -(CO)₃ bzw. $(\eta^7-C_7H_6X)V(\eta^5-C_5H_5)$ durchgeführt [4]. Wir haben nun in Zusammenhang mit der ⁵¹V-NMRspektroskopischen Charakterisierung von $(\eta^5-C_5H_5)V$ und $(\eta^5-C_5Me_5)V$ -Komplexen mit substituentenfreien Chalkogen-Liganden [5-9] carbonyl-substituierte Derivate von $(\eta^7-C_7H_7)V(CO)_3$ mit Phosphan-Liganden dargestellt und NMR-spektroskopisch untersucht.

Im Falle des vergleichbaren η^5 -Cyclopentadienyl-tetracarbonylvanadiums, $(\eta^{5}-C_{5}H_{5}(V(CO)_{4}), \text{ sind unter})$ photochemischen Bedingungen bereits viele Monophosphan-Komplexe $(\eta^5 - C_5 H_5)V(CO)_3(L)$ (L = PH₃ [10,11], PⁿBu₃ [12], PⁱPr₃, PEt₂Ph [13], PPh₃ [14–16], PF₃ [17], PMe₃, P(OMe)₃, PPh₂Me [vgl. 17], PMe₂(NMe₂) [18] und PEt₃ [19]) dargestellt worden. Darüber hinaus lassen sich disubstituierte Verbindungen des Typs $(\eta^5 - C_5 H_5)V(CO)_2(L)_2$ mit $L = PH_3$, $P^{n}Bu_{3}$, $PEt_{2}Ph$ [13], PF_{3} , PMe_{3} , $P(OMe)_{3}$ und $PPh_{2}Me$ [vgl. 17] erhalten. Derivate mit bifunktionellen Phosphan-Liganden wie $cis-(\eta^5-C_5H_5)V(CO)_2(Ph_2PCH_2 CH_2PPh_2$) [vgl. 17], cis- bzw. trans- $(\eta^5-C_5H_5)$ - $V(CO)_2(L-L)$ (L-L = PPh(CH₂CH₂PPh₂)₂ [20]) und trans- $[(\eta^{5}-C_{5}H_{5})V(CO)_{2}]_{2}(\mu-P_{2}Mes_{2})$ [21] sind ebenfalls beschrieben worden. Neben der direkten Photolyse von $(\eta^5 - C_5 H_5) V(CO)_4$ in Gegenwart des jeweiligen Phosphan-Liganden kann als synthetische Variante eine zweistufige Reaktionsführung verwendet werden, bei der zunächst unter Bestrahlung kinetisch labile Tricarbonyl-Komplexe $(\eta^5 - C_5 H_5)V(CO)_2 L' (L' = SMe_2)$ [22], MeCN [23]) oder $(\eta^5 - C_5 Me_5)V(CO)_3L'$ (L' = thf [24], SMe₂, MeCN [25]) als reaktive Zwischenstufen erzeugt werden und die Verdrängung des labilen Liganden L' durch das Phosphan in einer anschließenden Dunkelreaktion unter milden Bedingungen erfolgen kann.

Die neuen $(\eta^7 - C_7 H_7)$ V-Komplexe können in Analogie zu den $(\eta^5 - C_5 H_5)$ V-Komplexen erhalten werden.

2. Ergebnisse und Diskussion

2.1. Darstellung von $(\eta^7 - C_7 H_7) V(CO)_3$

Die Synthese von $(\eta^7 - C_7 H_7)V(CO)_3$ aus $V(CO)_6$ und 1,3,5-Cycloheptatrien, $C_7 H_8$, ist nicht besonders ergiebig (Literatur-Ausbeuten 21% [1] bzw. 15% [2]). Versuche zur Optimierung ergaben bessere Ausbeuten (34%), wenn $V(CO)_6$ nur mit dem 2–3-fachen $C_7 H_8$ - Überschuß, aber etwas länger (90 min) am Rückfluß erhitzt wurde. Als Nebenprodukt entsteht ein Sandwich-Kation (Gln. (1), (2)).

$$V(CO)_{6} + C_{7}H_{8} \longrightarrow$$

$$(\eta^{7}-C_{7}H_{7})V(CO)_{3} + 3CO + 1/2H_{2} \quad (1)$$

$$2V(CO)_{6} + 2C_{7}H_{8} \longrightarrow$$

$$[(\eta^{7}-C_{7}H_{7})V(\eta^{6}-C_{7}H_{8})][V(CO)_{6}]$$

$$+ 6CO + 1/2H_{2} \quad (2)$$

2.2. Monosubstitutionsprodukte

In der Chemie der $(\eta^5-C_5H_5)V$ - bzw. $(\eta^5 C_5Me_5$)V-Komplexe haben sich donor-stabilisierte Halbsandwich-Komplexfragmente des Typs (η^5 - C_5Me_5)V(CO)₃L' (L' = thf, SMe₂ und MeCN) als reaktive Edukte bewährt [22–25]. Im Falle der (η^7 -C₇H₇)V-Chemie ist der braun-grüne Acetonitril-Komplex $(\eta^7 - C_7 H_7)V(CO)_2(NCMe)$ für weitere Umsetzungen geeignet, da er bei der Photolyse von (η^7 - $C_{7}H_{7}$)V(CO)₃ in thf/MeCN (2/1) bei 0°C quantitativ entsteht, wie das Lösungs-IR-Spektrum im ν (CO)-Bereich erkennen läßt. Bei der Bestrahlung einer grünen thf-Lösung von $(\eta^7-C_7H_7)V(CO)_3$ mit dem Quecksilber-Hochdruckbrenner trat dagegen keine CO-Abspaltung ein, und der Dimethylsulfan-Komplex $(\eta^7 - C_7 H_7)V(CO)_2(SMe_2)$ entstand nur im Gemisch mit dem Edukt, auch wenn SMe₂ im zehnfachen Überschuß eingesetzt wurde.

Die donor-stabilisierten Komplexfragmente (η^7 -C₇H₇)V(CO)₂L' sind unbeständiger als die analogen Komplexfragmente (η^5 -C₅Me₅)V(CO)₃L' (L' = SMe₂, MeCN) [25]) und zersetzen sich beim Abziehen des Solvens unter Rückbildung von (η^7 -C₇H₇)V(CO)₃.

Die monosubstituierten Komplexe $(\eta^7 - C_7 H_7)V$ -(CO)₂(L) (**1a-g**) lassen sich sowohl unter direkter Photolyse von $(\eta^7 - C_7 H_7)V(CO)_3$ in Gegenwart äquimolarer Mengen L in thf-Lösung als auch über die Acetonitrilverbindung als Zwischenstufe darstellen (Gln. (3), (4)).

Abb. 1. ⁵¹V-NMR-Spektrum des Reaktionsgemisches der Umsetzung von $(\eta^7 - C_7 H_7)V(CO)_2[P(OMe)_3]$ (1d) mit PMe₃ (a) in thf-Lösung.

Abb. 2. ³¹P- und ⁵¹V-NMR-Spektren von a) $(\eta^7 - C_7 H_7)V(CO)_2(Ph_2 - C = C - PPh_2)$ (1h) und b) $[(\eta^7 - C_7 H_7)V(CO)_2]_2(Ph_2 P - C = C - PPh_2)$ (3h) in thf-Lösung.

Die Produkte 1a-g konnten durch Säulenchromatographie in reiner Form isoliert werden. Nur 1g zersetzte sich auf Kieselgel und wurde daher durch Kristallisation bei -78° C gereinigt.

Mit P(SiMe₃)₃ und NEt₃ wurden keine substituierten Derivate erhalten. Bei der Photolyse in Gegenwart von Pyridin entstand dunkelblaues (η^7 -C₇H₇)V-(CO)₂(NC₅H₅) (δ (⁵¹V) = -655).

2.3. Disubstitutionsprodukte

Wenn der Phosphorligand klein ist, lassen sich zwei CO-Liganden in $(\eta^7 - C_7 H_7)V(CO)_3$ substituieren (Gln. (5), (6)).

$L = PMe_3 (a),$ $P(OMe)_3 (d)$

Ein Acetonitril-Komplex des Typs $(\eta^7 - C_7 H_7)V(CO)$ -(L)(NCMe) konnte nicht erhalten werden. Jedoch eröffnete die Photolyse von $(\eta^7 - C_7 H_7)V(CO)_2$ [P-(OMe)₃] (1d) in Gegenwart von PMe₃ (a) einen Weg zum gemischten Komplex $(\eta^7 - C_7 H_7)V(CO)$ -(PMe₃)[P(OMe)₃] (2a/d), der ein Chiralitätszentrum am Vanadium besitzt. Bei der komplementären Umsetzung von 1a mit P(OMe)₃ (d) verdrängt das Phosphit (d) den Phosphanliganden PMe₃ (a) (Gl. (7)).

$$(\eta^{7}-C_{7}H_{7})V(CO)_{2}(PMe_{3}) + P(OMe)_{3} \xrightarrow{n\nu} (thf)$$
(1a) (d)
$$(\eta^{7}-C_{7}H_{7})V(CO)_{2}[P(OMe)_{3}] + (\eta^{7}-C_{7}H_{7})V(CO)[P(OMe)_{3}]_{2}$$
(1d) (2d/d)
(7)

Der chirale Komplex 2a/d entsteht bei der Photolyse von 1d mit der äquimolaren Menge PMe₃ (a) im Gemisch mit 2a/a (Gl. (8)).

$$(\eta^{7}-C_{7}H_{7})V(CO)_{2}[P(OMe)_{3}] + PMe_{3} \xrightarrow{n\nu} (thO)$$

$$(1d) (a)$$

$$(\eta^{7}-C_{7}H_{7})V(CO)(PMe_{3})[P(OMe)_{3}] + (\eta^{7}-C_{7}H_{7})V(CO)(PMe_{3})_{2}$$

$$(2a/d) (2a/a)$$

$$(8)$$

Obwohl die Trennung von 2a/a und 2a/d (durch Säulenchromatographie an Kieselgel oder durch frakt. Kristallisation) nicht gelang, lassen sich die beiden Komplexe anhand des ⁵¹V-NMR-Spektrums eindeutig identifizieren (Abb. 1): Neben dem für 2a/a typischen Triplett bei $-855 \text{ ppm} ({}^{1}J({}^{51}V, {}^{31}P) = 258 \text{ Hz})$ tritt mit vergleichbarer Intensität das Doppeldublett für 2a/d bei -983 ppm (¹J(⁵¹V, ³¹P) = 258 Hz (PMe₃) und 446 Hz $(P(OMe)_3)$ auf.

Bei allen Umsetzungen mit PMe₃ (a) und P(OMe)₃ (d) liegen immer auch die monosubstituierten Komplexe $(\eta^7 - C_7 H_7)V(CO)_2(L)$ (1) im Gemisch mit den disubstituierten Derivaten 2 in der Lösung vor. Bei der Kristallisation auf Trockeneis reichert sich 2 im kristallinen Produkt an.

2.4. Komplexe mit bifunktionellen Phosphanen

Bei der Umsetzung von $(\eta^7 - C_7 H_7)V(CO)_2(NCMe)$ mit dem Acetylenderivat Ph₂PC=CPPh₂ (h) (Molverhältnis 2/1) entstanden nebeneinander 1h und 3h mit jeweils ca. 30% Ausbeute (Gl. (9)).

(1h, olivfarben)

Die Komplexe 1h und 3h lassen sich durch Säulenchromatographie an Kieselgel trennen. Ihre ⁵¹V-NMR-Spektren unterscheiden sich nur geringfügig $(\Delta\delta(^{51}V) = 4 \text{ ppm})$, aber die ³¹P-NMR-Spektren können zur Unterscheidung verwendet werden (Abb. 2).

Das ³¹P-NMR-Spektrum von 1h zeigt zwei Signale im Intensitätsverhältnis 1/1. Die leicht verbreiterte Resonanz bei - 34.1 ppm entspricht dem unkomplexierten Ende des Liganden (vgl. freier Ligand h - 33.1 ppm). Das andere Signal bei 55.7 ppm ist durch Spin-Spin-Wechselwirkung mit dem Ouadrupolkern ⁵¹V (1 =7/2) verbreitert. Im Falle des Zweikernkomplexes 3h wird nur eine breite Resonanz bei 55.7 ppm beobachtet. Die ¹H- und ¹³C-NMR-Daten (Integrale, Zahl der Phenvlsignale) entsprechen den angenommenen Strukturen.

Bei der photo-induzierten Reaktion von (η^7) - C_7H_7)V(CO)₃ mit *cis*-Bis(diphenylphosphino)ethylen, cis-Ph₂PCH=CHPPh₂ (i) (Molverhältnis 1/1) wurden nebeneinander der Zweikernkomplex 3i und der Chelatkomplex 4i erhalten: letzterer entsteht bevorzugt (GI. (10)).

Mit dem sterisch weniger anspruchsvollen Chelatliganden $Me_2PCH_2CH_2PMe_2$ (j) ist die Chelatisierung noch stärker begünstigt als mit i. Neben dem Hauptprodukt 4j, dessen ³¹P- und ⁵¹V-NMR-Spektrum in Abb. 3 abgebildet sind, enthält die Reaktionslösung auch den zweikernigen Komplex $[(\eta^7 - C_7 H_7)V(CO)_2]_2(\mu -$ Me₂PCH₂CH₂PMe₂) (3j), der anhand der Spektren in Lösung charakterisiert wurde.

Abb. 3. ³¹P- und ⁵¹V-NMR-Spektrum von $(\eta^7-C_7H_7)V(CO)(Me_2P-$ CH₂CH₂-PMe₂) (4) in thf-Lösung.

M. Herberhold, M. Schrepfermann / $(\eta^7 - C_7 H_7)V(CO)_3$ -Komplexe mit Phosphan-Liganden

(4j, rotbraun)

Bei äquimolarer Umsetzung von $(\eta^7 - C_7 H_7)V(CO)_3$ mit Me₂PCH₂CH₂PMe₂ (j) entstehen Chelatkomplex 4j und verbrückter Zweikernkomplex 3j im Verhältnis 10/1. Die analoge Reaktion mit *cis*-Ph₂PCH=CHPPh₂ (i) ergibt unter gleichen Bedingungen 4i und 3i im Verhältnis 2/1.

3. Spektroskopische Charakterisierung

Tabelle 1 enthält die spektroskopischen Daten der $(\eta^7 - C_7 H_7)V$ -Komplexe. Die Kombination von ⁵¹V- und ³¹P-NMR-Spektroskopie führt zu eindeutiger Charakterisierung der Komplexe.

Die NMR-chemischen Verschiebungen $\delta({}^{51}V)$ der donor-stabilisierten Dicarbonyl-Komplexe (η^{7} -C₇H₇) V-(CO)₂(L') (L' = SMe₂ ($\delta({}^{51}V) = -861$) und MeCN ($\delta({}^{51}V) = -796$) lassen sich gut mit denen der entsprechenden Tricarbonyl-Komplexe (η^{5} -C₅H₅)V-(CO)₃(NCMe) (-719 ppm) [26] und (η^{5} -C₅Me₅)V(CO)₃(L') (L' = SMe₂ (-859) bzw. MeCN (-715)) [25] vergleichen.

Die chemischen Verschiebungen $\delta(^{51}V)$ der η^{7} -C₇H₇)V-Komplexe mit den phosphorhaltigen Liganden sind in Schema 1 vergleichend zusammengestellt.

Aufgrund der ${}^{1}J({}^{51}V, {}^{31}P)$ -Kopplung erscheint das ${}^{51}V$ -NMR-Signal bei den Komplextypen 1 und 3 als Dublett, bei 2 und 4 als Triplett. Die Größe der Kopplungskonstante hängt von der Art der Substituenten am Phosphor ab; sie beträgt bei Triorganylphosphanen PR₃ (R = alkyl, aryl) 258 Hz, bei P(NMe₂)₃ 352 Hz und bei den Triorganophosphiten, P(OR)₃ (R = alkyl, SiMe₃) 446 Hz. Auf jeden Fall sind die hier ermittelten Kopplungskonstanten deutlich größer als die der entsprechenden (η^{5} -C₅H₅)V-Komplexe mit entsprechenden Phosphanliganden ((η^{5} -C₅H₅)V(CO)₃(L), (157-311 Hz) [26]).

Aus Schema 1 lassen sich folgende Gesetzmäßigkeiten ableiten:

1. Die Abschirmung des ⁵¹V-Kerns nimmt in der Reihe $P(NMe_2)_3 < PR_3 < P(OR)_3$ zu. Dies entspricht den Erfahrungen, die auch bei Pentacarbonylvanadaten, $[V(CO)_5(phos)]^-$ [27], und bei Halbsandwich-Komplexen, $(\eta^5-C_5H_5)V(CO)_3(L)$ [17,26], gemacht wurden. Die Abstufung erklärt sich aus zunehmender Liganden-

Schema 1. ⁵¹V-NMR-Chemische Verschiebungen der $(\eta^7 - C_7 H_7)V$ -Komplexe mit mono- und bifunktionellen Phosphanliganden.

stärke [17] und zunehmender π -Akzeptorwirkung [28] zu den Phosphiten hin.

2. Der ⁵¹V-Kern ist bei den disubstituierten Verbindungen (2) stärker entschirmt als bei den monosubstituierten (1).

3. Innerhalb der Gruppe der Phosphan-Komplexe ist der Kern umso stärker entschirmt, je sterisch anspruchsvoller der Rest R im Triorganylphosphan wird, z.B.

$$\frac{L}{\delta(5^{1}V)} = \frac{PMe_{3} (1a) P^{n}Bu_{3} (1c) PPh_{3} (1b)}{-1346 -1316 -1190}$$

4. In den Chelatkomplexen (4) ist der Vanadiumkern wirkungsvoller entschirmt als in den Zweikernverbindungen 3, deren ⁵¹V-Shift nahezu mit dem der einkernigen Monosubstitutionsprodukte 1 übereinstimmt, z.B.

L	PPh ₃	Ph ₂ PO=CPPh ₂	Ph ₂ PCH=CHPPh ₂	РМе ₃	Me ₂ PCH ₂ CH ₂ PMe ₂
	(1b)	(3i)	(3b)	(1а)	(3J)
8(⁵¹ V)	-1190	-1188	- 1242	- 1346	- 1354

Ahnliche Trends sind auch im System der $(\eta^5 - C_5H_5)V$ -Komplexe bekannt [29].

Die ³¹P-NMR-Signale sind durch die Spin-Spin-Kopplung des ³¹P-Kerns mit dem Quadrupolkern ⁵¹V (I = 7/2) stark verbreitert; die Halbwertsbreiten liegen bei *ca.* 2–3.4 kHz. Die Linienbreiten entsprechen der 7-fachen ¹J(⁵¹V, ³¹P)-Kopplungskonstante, die aus den ⁵¹V-NMR-Spektren erhältlich ist. Die acht Linien sind allerdings nur bei Phosphit-substituierten Komplexen und langen Akkumulationszeiten sichtbar. Durch die Koordination an das (η^7 -C₇H₇)V-Fragment verschiebt sich das scharfe ³¹P-NMR-Signal der freien Phosphor-Liganden um 50–90 ppm zu tieferem Feld und wird breit.

In den ¹H- und ¹³C-NMR-Spektren der phosphorhaltigen Komplexe tritt der Siebenring stets als Sin-

TABELLE 1. Spektroskopische Daten

Komplex	$\frac{\delta(^{51}V)^{a}}{(\Delta\nu_{1/2})}$	$\frac{\delta(^{31}P)^{a}}{(\Delta\nu_{1/2})}$	${}^{1}J({}^{51}V, {}^{31}P)$	$\delta({}^{1}\text{H})^{a}$ ["J(${}^{31}\text{P}, {}^{1}\text{H}$)]	$\delta(^{13}C)^{a}$ [$^{n}J(^{31}P, ^{13}C)$]	IR ^b (cm ⁻¹)
$\overline{(\eta^7 - C_7 H_7) V(CO)_3}$	- 1518	•/ ~		4.52	93.9	1983vs
	(50)					1913vs
$(\eta^7 - C_7 H_7) V(CO)_2 (SMe_2)$	-861 °					1919vs
$\left(\frac{1}{2} \right) $	(110) 705 d					1854s
$(\eta' - C_7 H_7) V(CO)_2 (NCMe)$	- /95 -					1927Vs 1860s
$(m^7 C H)V(CO)$ (PMe)	(130) - 1346	10.2	258	4 70	88 Q	1913vs
(1) - (1) + (1)	- 1540	(2000)	200	0.90	21.4 [9.3]	1913 v 3 1847s
$(n^7 - C_a H_a)V(CO)_a(PPh_a)$	- 1190	(2000)	258	7.39	±11.[5.00]	1924vs
(1b)				7.04 (15)		1862s
				4.67 (7)		
$(\eta^7 - C_7 H_7) V(CO)_2 (P^n Bu_3)$	- 1316	38.2	258	4.74 (7)	91.4	1913vs
(1c)		(2000)		1.33	28.3 [15.8]	1848s
				1.22 (27)	26.0 [0.5]	
				0.64 J	24.6 [11.4]	
	1405	101.1	117	4.01 (7)	13.9	1020
$(\eta' - C_7 H_7) V(CO)_2 (P(OMe)_3)$	- 1405	191.1	446	4.81 (/)	92.4 50 7 [2 2]	1929VS
(1d)	1207	(3400)	116	3.20 (9) [10.2]	50.7 [5.5] 02.4	18/18 1926vs
$(\eta' - C_7 H_7) V(CO)_2 [P(OEI)_3]$	- 1397	(3400)	440	4.04 (7)	50 8 [3 3]	192005
(10)		(3400)		1 03 (9)	163[60]	10053
$(m^{7}-C-H-)V(CO)-[P(OMe)-(OSiMe_{1})]^{\circ}$	- 1384	189 5	446	4.84 (7)	92.3	1929vs
(1f)	1504	(3400)	110	3.13 (6) [10.9]	49.9 [3.8]	1864s
		(0.00)		0.18 (9)	1.2	
$(\eta^{7}-C_{7}H_{7})V(CO)_{2}[P(NMe_{2})_{3}]$	-1172	183.3	352	4.84 (7)	91.7	1916vs
(1g)		(2600)		2.30 (18) [8.3]	38.5 [6.0]	1854s
$(\eta^{7}-C_{7}H_{7})V(CO)_{2}(L-L)$	-1238	55.7(1)	258	7.71	139.5 [36.5]	1930vs
$(L-L=Ph_2PC=CPPh_2)$		(2000)		7.01	137.3 [36.5]	1867s
(1h)		- 34.1(1)		4.76 (7)	133.2 [21.2]	
		(100)			133.0 [21.2]	
					131.9[12.5]	
					131.8 [12.3]	
					129.0	
					03 3	
$(m^7 - C + W(CO) PM_{e_1})$	- 855	10.2	258	4 68 (7)	88.4	1800vs
$(\eta - C_{7} \Pi_{7}) \vee (CO(1 M C_{3})_{2})$	000	(2000)	200	0.86 (18)	21.2 [9.3]	100010
$(n^7 - C_2 H_2)V(CO)P(OMe)_2$	- 1081	207.9	446	5.02 (7)	90.4	1843vs
(2d/d)		(3400)		3.26 (18) [10.2]	48.7 [10.9]	
$(\eta^7 - C_7 H_7) V(CO) (PMe_3) [P(OMe)_3]$	- 983		258			1815vs
(2a/d)			446			
$[(\eta^7 - C_7 H_7)V(CO)_2]_2(\mu - L - L)$	- 1242	56.7	258	7.76	137.3 [36.5]	1930vs
$(L-L = Ph_2PC = CPPh_2)$		(2000)		7.07 J	133.2 [21.2]	1869s
(3h)				4.77 (7)	131.9 [12.5]	
					130.0	
					120.0 [0.0] 03 3	
$[(m^7, C, H,)V(CO)](, L, L)$	- 1199	673	258	7 35]	147.0 [7 1]	1925vs
$(I_{-I} = cis_Ph_PCH_PCH_Ph_)$	1100	(2000)		7.00 (11)	139.5 [4.4]	1862s
(3i)		(2000)		4.69 (7)	133.3 [9.8]	
					128.7 [3.3]	
					128.6	
					92.8	
$[(\eta^7 - C_7 H_7)V(CO)_2]_2(\mu - L - L)$	- 1354		258			1913vs
$(L-L = Me_2PCH_2CH_2PMe_2)$						1844s
(3j)						

 TABELLE 1. (Fortsetzung)

Komplex	$\delta(^{51}V)^{a}$ ($\Delta \nu_{1/2}$)	$\frac{\delta(\delta(^{31}P)^{a}}{(\Delta\nu_{1/2})}$	${}^{1}J({}^{31}P, {}^{51}V)$	δ(¹ H) ^a [ⁿ J(¹ H: ³¹ P)]	$\delta(^{13}C)^{a}$ [<i>ⁿJ</i> (¹³ C, ³¹ P)]	IR ^b (cm ⁻¹
$\overline{(\eta^7-C_7H_7)V(CO)(L-L)}$ $(L-L = cis-Ph_2PCH=CHPPh_2)$ $(4i)$	- 1123	68.1 (2000)	258	7.36 7.08 4.76 (7)	147.1 [7.1] 139.5 [4.4] 133.3 [9.8] 128.7 [3.3] 128.5 89.5	1857
$(\eta^{7}-C_{7}H_{7})V(CO)L-L)$ $(L-L = Me_{2}PCH_{2}CH_{2}PMe_{2})$ $(4j)$	- 1206	54.4 (2000)	258	4.75 (7) 0.99 (12) [3.0] 0.76 (4) [12.0]	87.8 29.0 [19.6] 18.5 [12.0] 18.0	1813

^a C₆D₆-Lösung. ^b ν (CO) in thf-Lösung. ^c thf-Lösung (ext. Lock). ^d thf/MeCN-Lösung (ext. Lock). ^e δ (²⁹Si) = 15.6, ²J(²⁹Si, ³¹P) = 18.5 Hz.

gulett ($\delta(^{1}H) = 4.67-5.02$, $\delta(^{13}C)$ im Bereich zwischen 87 und 94 ppm) auf.

Die IR-Spektren der Dicarbonylvanadium-Komplexe (1 und 3) enthalten jeweils eine sehr intensive ν (CO)-Absorption um 1920 (\pm 10) cm⁻¹ und eine breitere Bande um 1850 cm⁻¹. Die Monocarbonylvanadium-Komplexe (2 und 4) zeigen—je nach Art des phosphorhaltigen Liganden—eine Bande zwischen 1800 und 1860 cm⁻¹.

4. Experimenteller Teil

Alle Umsetzungen wurden unter Argon in Argesättigten Lösungsmitteln durchgeführt, die vorher über Na/K-Legierung getrocknet worden waren (Toluol, Tetrahydrofuran (thf), Ether, Hexan und Pentan).

Folgende Reagenzien waren handelsübliche Produkte und wurden ohne weitere Reinigung eingesetzt: SMe₂, PPh₃, P(OMe)₃, P(OEt)₃, P(NMe₂)₃ (Merck); MeCN (99.99% unter N₂), P(OMe)₂(OSiMe₃), Me₂PCH₂CH₂PMe₂ (Aldrich); Ph₂PC \equiv CPPh₂ und *cis*-Ph₂PCH=CHPPh₂ (Ventron); PⁿBu₃ (Ciba-Geigy); P(SiMe₃)₃ (Alfa). Trimethylphosphan, PMe₃, wurde gemäß [30] dargestellt. Zur Säulenchromatographie wurde in mehreren Zyklen entgastes und mit Argon beladenes Kieselgel 60 (Merck) als Pentanaufschlämmung in einer wassergekühlten (15°C) Säule verwendet. Für die bei 0°C (Kühlung mit Eiswasser) durchgeführten Photolysen wurde ein wassergekühlter Quecksilberdampf-Hochdruckstrahler TQ 718 (Heraeus, Orginal Hanau, Leistungsaufnahme 700 W) eingesetzt.

4.1. Darstellung von $(\eta^7$ -Cycloheptatrienyl)tricarbonylvanadium, $(\eta^7$ -C₇H₇)V(CO)₃

In einem Schlenkrohr wurden 6.11 g V(CO)₆ (27.9 mmol) in 220 ml Hexan gelöst und mit 6.7 ml (65.0 mmol) destilliertem 1,3,5-Cycloheptatrien, C_7H_8 , ver-

setzt. Das Reaktionsgemisch wurde in einem vorgeheizten Ölbad ($ca. 100^{\circ}$ C) 90 min am Rückfluß gehalten. Die erkaltete Reaktionslösung wurde dann über eine feinporige Fritte filtriert und der Rückstand mehrmals mit Hexan (jeweils 30 ml) gewaschen. Das Eluat wurde am Hochvakuum auf ca. 60 ml eingeengt und über Nacht auf Trockeneis gestellt. Der Halbsandwich-Komplex kristallisiert in dunkelgrünen Nadeln aus. Die überstehende Mutterlauge wurde vorsichtig dekantiert und das Produkt am Hochvakuum getrocknet; Ausbeute: 2.14 g (34%).

4.2. Allgemeine Vorschrift zur Darstellung der monosubstituierten Halbsandwich-Verbindungen $(\eta^7 - C_7 H_7) - V$ $(CO)_2(PR_3)$ (1)

Eine 1–2% ige thf-Lösung äquimolarer Mengen des Halbsandwich-Komplexes $(\eta^7 - C_7 H_7)V(CO)_3$ und des entsprechenden Phosphan-Liganden wurde 90 min am Paraffin-Überdruckventil bestrahlt und dann zur Trockne gebracht. Der Rückstand wurde mit wenig Toluol extrahiert und als Konzentrat auf die Chromatographiersäule gegeben. Nachdem überschüssiges Edukt mit Hexan ausgewaschen worden war, konnten die grünen Produkte mit Hexan/Toluol (1/1) eluiert werden.

Bei der alternativen Methode über den Acetonitril-Zwischenkomplex $(\eta^7 \cdot C_7 H_7)V(CO)_2(NCMe)$ wurde $(\eta^7 \cdot C_7 H_7)V(CO)_3$ in thf/MeCN (2/1) 1 h bestrahlt und dann mit der äquimolaren Menge des Phosphanliganden versetzt. Der Ligandenaustausch vollzog sich bei Raumtemperatur im Laufe von 30-60 min und konnte mittels IR-Spektroskopie verfolgt werden. Die Aufarbeitung erfolgte wie bei der photochemischen Reaktion.

Die Halbsandwich-Dicarbonyle wurden in brauchbaren Ausbeuten erhalten: 1a (70%), 1b (56%), 1c (48%), 1d (87%), 1e (65%) und 1f (34%). Der Aminophosphan-Komplex 1g zersetzt sich auf Kieselgel und mußte daher durch Kristallisation aus Hexan $(-78^{\circ}C)$ gereinigt werden (Ausbeute 33%).

4.3. Umsetzung von $(\eta^7 - C_7 H_7)V(CO)_3$ mit überschüssigem $P(OMe)_3$ (d)

Eine thf-Lösung (80 ml) von 97 mg (0.43 mmol) $(\eta^7-C_7H_7)V(CO)_3$ und 0.15 ml (1.27 mmol) P(OMe)_3 (d) wurde 1 h bei 0°C bestrahlt. Nach Abziehen des Lösungsmittels wurde ein Toluol-Extrakt hergestellt und an Kieselgel getrennt:

Zone	Farbe	Elution mit	Produkt
I	hellgrün	Hexan	$(\eta^7 - C_7 H_7) V(CO)_3$
11	grün	Toluol	70 mg 1d (50%)
III	rotbraun	Ether	80 mg 2d/d (44%)

4.4. Umsetzungen von $(\eta^7 - C_7 H_7)V(CO)_3$ mit bifunktionellen Phosphanen

(a) Umsetzung mit $Ph_2PC \equiv CPPh_2$ (h)

Die Lösung von 122 mg (0.54 mmol) (η^7 -C₇H₇)V(CO)₃ in 80 ml thf/MeCN (3/1) wurde 1 h bestrahlt und anschliessend mit 106 mg (0.27 mmol) **h** versetzt. Nach 1 h Rühren bei Raumtemperatur wurde das Lösungsmittel entfernt, der Rückstand mit wenig Toluol extrahiert und an Kieselgel chromatographiert:

Zone	Farbe	Elution mit	Produkt
I	hellgrün	Hexan	$(\eta^7 - C_7 H_7) V(CO)_3$
11	oliv	Hexan/Toluol (1/1)	95 mg 1h (30%)
111	rotbraun	Hexan/Toluol (1/1)	64 mg 3h (30%)

(b) Umsetzung mit cis-Ph₂PCH=CHPPh₂ (i)

Eine Lösung von 148 mg (0.65 mmol) (η^7 -C₇H₇)V(CO)₃ und 260 mg (0.65 mmol) i in 100 ml thf wurde 90 min lang bei 0°C bestrahlt. Die rotbraune Reaktionslösung wurde dann zur Trockne gebracht und als Toluol-Extrakt chromatographisch aufgetrennt:

Zone	Farbe	Elution mit	Produkt
I II III	hellgrün hellbraun	Hexan Hexan/Toluol (1/2) Toluol	$(\eta^7 - C_7 H_7) V(CO)_3$ 60 mg 3i (23%) 177 mg 4i (48%)

(c) Umsetzung mit Me₂PCH₂CH₂PMe₂ (j)

In 120 ml thf wurden 240 mg (1 mmol) (η^7 -C₇H₇)V(CO)₃ gelöst, mit 0.16 ml (0.96 mmol) **j** versetzt und 90 min bei 0°C bestrahlt. Dann wurde das Lösungsmittel von der rotbraunen Reaktionslösung entfernt, der Rückstand mit 3×15 ml Pentan extrahiert (Entfernung von restlichem $(\eta^7 \cdot C_7 H_7)V \cdot$ (CO)₃), in 10 ml Toluol gelöst und über Nacht auf Trockeneis gestellt. Es wurden 185 mg **4j** (58%) erhalten, während in der Mutterlauge neben wenig **4j** der zweikernige Komplex **3j** identifiziert werden konnte.

4.5. Spektroskopische Messungen

Die NMR-Spektren wurden in der Regel in C_6D_6 -Lösung an Geräten des Typs JEOL FX 90Q (³¹P, ⁵¹V) und Bruker AC 300 (¹H, ¹³C, ²⁹Si) bei Raumtemperatur aufgenommen. Die ⁵¹V-NMR-spektroskopischen Verschiebungen beziehen sich auf reines VOCl₃ (δ (⁵¹V) = 0) als externen Standard. Die IR-Spektren wurden an einem Gerät Perkin-Elmer 983G (in thf-Lösung) gemessen.

Dank

Wir sind der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie (Studienabschluß-Stipendium für M.S.) für die finanzielle Unterstützung unserer Arbeiten sehr dankbar.

Literatur

- 1 R.P.M. Werner und S.A. Manastyrskyj, J. Am. Chem. Soc., 83 (1961) 2023.
- 2 G.M. Whitesides und H.L. Mitchell, J. Am. Chem. Soc., 91 (1969) 2245.
- 3 H.P. Fritz und C.G. Kreiter, Chem. Ber., 97 (1964) 1398.
- 4 J. Müller und B. Mertschenk, J. Organomet. Chem., 34 (1972) 165.
- 5 M. Herberhold und M. Kuhnlein, New J. Chem., 12 (1988) 357.
- 6 M. Herberhold, M. Kuhnlein, M.L. Ziegler und B. Nuber, J. Organomet. Chem., 349 (1988) 131.
- 7 M. Herberhold, M. Kuhnlein, M. Schrepfermann, M.L. Ziegler und B. Nuber, J. Organomet. Chem., 398 (1990) 259.
- 8 M. Herberhold und M. Schrepfermann, J. Organomet. Chem., 419 (1991) 85.
- 9 M. Herberhold, M. Schrepfermann und J. Darkwa, J. Organomet. Chem., 430 (1992) 61.
- 10 E.O. Fischer, E. Louis und R.J.J. Schneider, Angew. Chem., 80 (1968) 122; Angew. Chem., Int. Ed. Engl., 7 (1968) 136.
- 11 E.O. Fischer, E. Louis, W. Bathelt und J. Müller, Chem. Ber., 102 (1969) 2547.
- 12 E.O. Fischer und R.J.J. Schneider, Angew. Chem., 79 (1967) 537; Angew. Chem., Int. Ed. Engl., 6 (1967) 569.
- 13 E.O. Fischer und R.J.J. Schneider, Chem. Ber., 103 (1970) 3684.
- 14 D.G. Alway und K.W. Barnett, Inorg. Chem., 19 (1980) 779.
- 15 R. Tsumura und N. Hagihara, Bull. Chem. Soc. Jpn., 38 (1965) 1901.
- 16 R.J. Kinney, W.D. Jones und R.G. Bergman, J. Am. Chem. Soc., 100 (1978) 7902.
- 17 H. Schmidt und D. Rehder, Trans. Met. Chem., 5 (1980) 214.
- 18 E. Schaedel und H. Vahrenkamp, Chem. Ber., 107 (1974) 3850.
- 19 J. Niemann, J.H. Teuben, J.C. Huffman und K.G. Caulton, J. Organomet. Chem., 255 (1983) 193.

- 20 I. Müller und D. Rehder, J. Organomet. Chem., 139 (1977) 293.
- 21 R.A. Bartlett, H.V.R. Dias und P.P. Power, J. Organomet. Chem., 362 (1989) 87.
- 22 A. Belforte, F. Calderazzo und P.F. Zanazzi, Gazz. Chim. Ital., 115 (1985) 71.
- 23 N.J. Coville, G.W. Harris und D. Rehder, J. Organomet. Chem., 293 (1985) 365.
- 24 C. Woitha und D. Rehder, J. Organomet. Chem., 353 (1988) 315.
- 25 M. Herberhold, M. Kuhnlein, W. Kremnitz und A.L. Rheingold, J. Organomet. Chem., 383 (1990) 71.
- 26 M. Hoch und D. Rehder, J. Organomet. Chem., 288 (1985) C25.
- 27 K. Ihmels und D. Rehder, Organometallics, 4 (1985) 1340.
- 28 R. Talay und D. Rehder, Inorg. Chim. Acta, 77 (1983) L175.
- 29 R. Borowski, D. Rehder und K. von Deuten, J. Organomet. Chem., 220 (1981) 45.
- 30 W. Wolfsberger und H. Schmidbaur, Synth. React. Inorg. Met. Org. Chem., 4 (1974) 149.